Journal Article
Review
Add like
Add dislike
Add to saved papers

Nutrient minimisation in the pulp and paper industry: an overview.

This paper reviews nutrient issues within the pulp and paper industry summarising: nitrogen and phosphorus cycles within treatment systems; sources of nutrients within pulping and papermaking processes; minimising nutrient discharge; new approaches to nutrient minimisation; and the impact of nutrients in the environment. Pulp and paper industry wastewaters generally contain insufficient nitrogen and phosphorus to satisfy bacterial growth requirements. Nutrient limitation has been linked to operational problems such as sludge bulking and poor solids separation. Nutrients have been added in conventional wastewater treatment processes to ensure optimum treatment performance. Minimising the discharge of total nitrogen and phosphorus from a nutrient limited wastewater requires both optimised nutrient supplementation and effective removal of suspended solids from the treated wastewater. In an efficiently operated wastewater treatment system, the majority of the discharged nutrients are contained within the biomass. Effective solids separation then becomes the controlling step, and optimisation of secondary clarification is crucial. Conventional practice is being challenged by the regulatory requirement to reduce nitrogen and phosphorus discharge. Two recent developments in pulp and paper wastewater treatment technologies can produce discharges low in nitrogen and phosphorus whilst operating under conventionally nutrient limited conditions: i) the nutrient limited BAS process (Biofilm-Activated Sludge) which combines biofilm and activated sludge technologies under nutrient limited conditions and ii) an activated sludge process based on the use of nitrogen-fixing bacteria. Aerated stabilisation basins often operate without nutrient addition, relying on settled biomass in the benthal zone feeding back soluble nutrients, or the fixation of atmospheric nitrogen. Thus effective nutrient minimisation strategies require a more detailed understanding of nutrient cycling and utilisation. Where it is not possible to meet discharge constraints with biological treatment alone, a tertiary treatment step may be required. In setting nutrient control guidelines, consideration should be given to the nutrient limitations of the receiving environment, including other cumulative nutrient impacts on that environment. Whether an ecosystem is N or P limited should be integrated with wastewater treatment considerations in the further design and development of treatment technology and regulatory guidelines. End-of-pipe legislation alone cannot predict environmental effects related to nutrients and must be supplemented by an effects-based approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app