Comparative Study
Evaluation Studies
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Validation Studies
Add like
Add dislike
Add to saved papers

Advanced search algorithms for information-theoretic learning with kernel-based estimators.

Recent publications have proposed various information-theoretic learning (ITL) criteria based on Renyi's quadratic entropy with nonparametric kernel-based density estimation as alternative performance metrics for both supervised and unsupervised adaptive system training. These metrics, based on entropy and mutual information, take into account higher order statistics unlike the mean-square error (MSE) criterion. The drawback of these information-based metrics is the increased computational complexity, which underscores the importance of efficient training algorithms. In this paper, we examine familiar advanced-parameter search algorithms and propose modifications to allow training of systems with these ITL criteria. The well known algorithms tailored here for ITL include various improved gradient-descent methods, conjugate gradient approaches, and the Levenberg-Marquardt (LM) algorithm. Sample problems and metrics are presented to illustrate the computational efficiency attained by employing the proposed algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app