Add like
Add dislike
Add to saved papers

Obstacle avoidance for kinematically redundant manipulators using a dual neural network.

One important issue in the motion planning and control of kinematically redundant manipulators is the obstacle avoidance. In this paper, a recurrent neural network is developed and applied for kinematic control of redundant manipulators with obstacle avoidance capability. An improved problem formulation is proposed in the sense that the collision-avoidance requirement is represented by dynamically-updated inequality constraints. In addition, physical constraints such as joint physical limits are also incorporated directly into the formulation. Based on the improved problem formulation, a dual neural network is developed for the online solution to collision-free inverse kinematics problem. The neural network is simulated for motion control of the PA10 robot arm in the presence of point and window-shaped obstacle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app