Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells.

Carcinogenesis 2004 November
Parthenolide (PN) is the main sesquiterpene lactone found in feverfew with potent anti-inflammatory function. The anticancer property of PN has been demonstrated in both in vitro cell culture and in vivo animal model, while the molecular mechanisms remain to be further elucidated. In the present study, we evaluated the involvement of nuclear transcription factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK) in the anticancer activity of PN by examining the sensitization effect of PN on tumor necrosis factor (TNF)-alpha-induced apoptosis in human cancer cells. Pre-treatment with PN greatly sensitized various human cancer cells to TNF-alpha-induced apoptosis. Such sensitization is closely associated with the inhibitory effect of PN on TNF-alpha-mediated NF-kappaB activation. Our study revealed a new mechanism that PN inhibits TNF-alpha-mediated NF-kappaB activation via disrupting the recruitment of the IkappaB kinases (IKK) complex to TNF receptor, which then blocked the subsequent signaling events including IKK kinase activation, IkappaBalpha degradation, p65 nuclear translocation, DNA binding and transactivation. Moreover, PN also markedly enhanced and sustained TNF-alpha-mediated JNK activation. A specific JNK inhibitor (SP600125), as well as over-expression of dominant-negative forms of JNK1 and JNK2 abolished the sensitization effect of PN on TNF-alpha-induced apoptosis. It is thus believed that suppressed NF-kappaB activation and sustained JNK activation contribute to the sensitization effect of PN to TNF-alpha-mediated cell death in human cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app