Add like
Add dislike
Add to saved papers

DDI-microFIA--A readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins.

We describe a chip-based immunoassay for multiplex antigen detection, based on the self-assembly of semi-synthetic DNA-protein conjugates to generate an easily configurable protein microarray. The general principle of this microarray-fluorescence immunoassay (microFIA) is similar to that of a two-sided (sandwich) immunoassay. However, covalent single-stranded DNA-streptavidin conjugates are employed for the efficient immobilization of biotinylated capture antibodies through hybridization to complementary surface-bound DNA oligomers. In a model system, we use the DNA-directed immobilization (DDI) of antibodies to generate an antibody microarray for the parallel detection of the tumor marker human carcinoembryonic antigen (CEA), recombinant mistletoe lectin rViscumin (rVis), ceruloplasmin (CEP), and complement-1-inactivator (C1A) in human blood serum samples. Detection limits down to 400 pg mL(-1) are reached. In addition, we describe a method for the internal standardization of protein microarray analyses, based on the simultaneous measurement of constant amounts of the blood proteins CEP and C1 A, intrinsically present in human serum, to compensate for interexperimental variations usually occurring in microarray analyses. The standardization leads to a significantly higher data reliability and reproducibility in intra- and interassay measurements. We further demonstrate that the DDI-microFIA can also be carried out in a single step by tagging of the analyte simultaneously with both capture and detection antibody and subsequent immobilization of the immunocomplex formed, on the DNA microarray capture matrix. This protocol significantly reduces handling time and costs of analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app