Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway.

Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) participates in control of expression of genes involved in adaptive thermogenesis, muscle fiber type differentiation, and fuel homeostasis. The objective of the present study was to evaluate the participation of cold-induced PGC-1alpha expression in muscle fiber type-specific activity of proteins that belong to the insulin-signaling pathway. Rats were exposed to 4 degrees C for 4 days and acutely treated with insulin in the presence or absence of an antisense oligonucleotide to PGC-1alpha. Cold exposure promoted a significant increase of PGC-1alpha and uncoupling protein-3 protein expression in type I and type II fibers of gastrocnemius muscle. In addition, cold exposure led to higher glucose uptake during a hyperinsulinemic clamp, which was accompanied by higher expression and membrane localization of GLUT4 in both muscle fiber types. Cold exposure promoted significantly lower insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and Ser473 phosphorylation of acute transforming retrovirus thymoma (Akt) and an insulin-independent increase of Thr172 phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Inhibition of PGC-1alpha expression in cold-exposed rats by antisense oligonucleotide treatment diminished glucose clearance rates during a hyperinsulinemic clamp and reduced expression and membrane localization of GLUT4. Reduction of PGC-1alpha expression resulted in no modification of insulin-induced tyrosine phosphorylation of the IR and Ser473 phosphorylation of Akt. Finally, reduction of PGC-1alpha resulted in lower Thr172 phosphorylation of AMPK. Thus cold-induced hyperexpression of PGC-1alpha participates in control of skeletal muscle glucose uptake through a mechanism that controls GLUT4 expression and subcellular localization independent of the IR and Akt activities but dependent on AMPK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app