Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intralaminar thalamic nuclei lesions: widespread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia.

Intralaminar thalamic nuclei represent a major site of non-dopaminergic degeneration in Parkinson disease, but the impact of this degeneration on the pathophysiological functioning of basal ganglia remains unknown. To address this issue, we compared the effects of 6-hydroxydopamine-induced lesions of nigral dopamine neurons alone or combined with ibotenate-induced lesions of intralaminar thalamic neurons on markers of neuronal metabolic activity in the rat basal ganglia using in situ hybridization histochemistry. Thalamic lesions prevented most of the dopamine denervation-induced changes (i.e. the increases in mRNA levels of enkephalin and GAD67 in the striatum, of GAD67 in the globus pallidus and entopeduncular nucleus, and of cytochrome oxidase subunit-I in the subthalamic nucleus), but did not affect the downregulation of striatal substance P and upregulation of GAD67 in the substantia nigra pars reticulata. We also provide immunohistochemical evidence that thalamic lesions markedly decreased striatal expression of the vesicular glutamate transporter vGluT2, confirming the association of this transporter with the thalamic projections to the basal ganglia. Altogether, these data reveal a major antagonistic influence of thalamic and dopaminergic afferents onto the basal ganglia and suggest that degeneration of thalamic neurons in Parkinson disease may represent an important factor counteracting expression of the defects associated with the dopamine denervation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app