Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells.

Circulation Research 2004 Februrary 21
Oxidized low-density lipoprotein (ox-LDL) induces apoptosis in endothelial cells. However, steps leading to ox-LDL-induced apoptosis remain unclear. We examined the role of ox-LDL and its newly described receptor LOX-1 in the expression of intracellular pro- and antiapoptotic proteins and caspase pathways in human coronary artery endothelial cells (HCAECs). Cells were cultured and treated with different concentrations (10 to 80 microg/mL) of ox-LDL for different times (2 to 24 hours). Ox-LDL induced apoptosis in HCAECs in a concentration- and time-dependent manner. Ox-LDL also activated caspase-9 and caspase-3, but not caspase-8. After ox-LDL treatment, there was a significant release of activators of caspase-9, including cytochrome c and Smac from mitochondria to cytoplasmic compartment, and their release was not affected by treatment of cells with inhibitors of either caspase-8 or caspase-9. Ox-LDL also decreased expression of antiapoptotic proteins Bcl-2 and c-IAP (inhibitory apoptotic protein)-1, which are involved in the release of cytochrome c and Smac and activation of caspase-9, in a concentration- and time-dependent manner. On the other hand, ox-LDL did not change the expression of Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (FLIP) and proapoptotic protein Fas, which are required for the activation of caspase-8. Further, ox-LDL did not cause the truncation of Bid, which implies the activation of caspase-8. In other experiments, pretreatment of HCAECs with the caspase-9 inhibitor z-LEHD-fmk, but not the caspase-8 inhibitor z-IETD-fmk, blocked ox-LDL-induced activation of caspase-3 and apoptosis. As expected, pretreatment with the caspase-3 inhibitor DEVD-CHO inhibited ox-LDL-induced activation of caspase-3 and resultant apoptosis. The proapoptotic effects of ox-LDL were mediated by its receptor LOX-1, because pretreatment of HCAECs with antisense-LOX-1, but not sense-LOX-1, blocked these effects of ox-LDL. These findings suggest that ox-LDL through its receptor LOX-1 decreases the expression of antiapoptotic proteins Bcl-2 and c-IAP-1. This is followed by activation of apoptotic signaling pathway, involving release of cytochrome c and Smac and activation of caspase-9 and then caspase-3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app