Add like
Add dislike
Add to saved papers

Prognostic ability of VE/VCO2 slope calculations using different exercise test time intervals in subjects with heart failure.

BACKGROUND: The minute ventilation-carbon dioxide production (VE/VCO2) slope, obtained during exercise testing, possesses prognostic value in heart failure (HF). The VE-VCO2 relationship is generally linear thereby hypothetically producing similar slope values regardless of the exercise-test time interval used for calculation.

DESIGN: This study assesses the ability of the VE/VCO2 slope, calculated at different time intervals throughout a progressive exercise test, to predict 1-year cardiac-related hospitalization and mortality in subjects with HF.

METHODS: Seventy-two subjects underwent symptom-limited exercise testing with ventilatory expired gas analysis. Mean age and left ventricular ejection fraction for 44 male and 28 female subjects were 51.2 years (+/-13.0) and 27.0% (+/-12.3) respectively. The VE/VCO2 slope was calculated from time 0 to 25, 50, 75 and 100% of exercise time and subsequently used to create five randomly selected VE/VCO2 slope categories.

RESULTS: (The intraclass correlation coefficient found calculation of the VE/VCO2 slope, when divided into quartiles, to be a reliable measure (alpha=0.94, P<0.0001). Univariate Cox regression analysis revealed all VE/VCO2 slope categories (25-100% and random selections) were significant predictors of cardiac-related hospitalization and mortality over a 1-year period. Multivariate Cox regression analysis revealed all VE/VCO2 slope categories outperformed peak oxygen consumption (VO2) in predicting hospitalization and mortality at 1 year.

CONCLUSIONS: Although the different classification schemes were not identical, these results suggest VE/VCO2 slope maintains prognostic significance regardless of exercise-test time interval. Calculation of VE/VCO2 slope may therefore still be valuable in subjects putting forth a sub-maximal effort while effort-dependent measures, such as peak VO2, are not.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app