Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Intradiscal pressure and kinematic behavior of lumbar spine after bilateral laminotomy and laminectomy.

BACKGROUND CONTEXT: Bilateral laminotomy has been proposed as an alternative to laminectomy for decompression of lumbar spinal stenosis. Preservation of the posterior midline ligaments with laminotomy is presumed to maintain spinal segment stability. There have been no previous studies that directly compare the amount of destabilization and increase in disc pressures between the two procedures.

PURPOSE: To quantify spinal segmental instability caused by bilateral laminotomy and laminectomy, and to compare the central and peripheral intradiscal pressures after the two procedures.

STUDY DESIGN/SETTING: Mechanical testing of the lumbar motion segments of calf spines.

METHODS: Nine fresh calf spines were tested under flexion, extension, lateral bending and axial rotation, intact first, then after laminotomy and laminectomy at the level of L4-L5. Four miniature pressure transducers were implanted in the central and peripheral disc at L4-L5 to measure intradiscal pressures. Three-dimensional motion was measured with motion analysis system.

RESULTS: Comparing with bilateral laminotomy, laminectomy showed significant increase in segmental motion at the surgical level in flexion (16%, p<.05), extension (14%, p<.04) and right axial rotation (23%, p<.03). In flexion, the stress at the anterior annulus increased a nonsignificant 20% after laminotomy, but significant 130% after laminectomy (p<.02). In the intact spine, the posterolateral annulus experienced the highest stress with lateral bending to the same side when compared with other loading directions. This stress remained unchanged after laminotomy but increased 9% after laminectomy (p<.06). In rotation, axial intradiscal stresses were evenly distributed and unchanged after each procedure.

CONCLUSIONS: Laminectomy causes more destabilization of a spinal motion segment than laminotomy and significantly increases disc stress in the anterior annulus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app