Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs.

Recent pharmacogenomic/pharmacogenetic studies have disclosed important roles of drug transporters in the pharmacokinetic/pharmacodynamic (PK/PD) profiles of some clinically relevant drugs. It has concurrently been explained that variations in the drug transporter genes are associated with not only inter-individual but also inter-ethnic differences in PK/PD profiles of these drugs. This review focuses on two uptake and two efflux transporters. Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are uptake transporters, specifically expressed in the liver, and considered important for drugs, particularly as their pharmacological target organ is the liver. Two ATP-binding cassette transporters, multi-drug resistance-associated protein 2 and breast cancer resistance protein, are efflux transporters, expressed in various human tissues, and considered particularly important for intestinal drug absorption and hepatic drug elimination. All 3-hydroxyl-3-methylglutaryl-CoA reductase inhibitors (statins) except fluvastatin are substrates for OATP1B1, but hepatobiliary (canalicular) efflux transporters differ among statins. In this review, we update the pharmacogenomic/pharmacogenetic properties of these transporters and their effects on PK/PD profiles of statins and other clinically relevant drugs. In addition, we describe a physiologically-based pharmacokinetic model for predicting the effects of changes in transporter activities on systemic and hepatic exposure to pravastatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app