Read by QxMD icon Read

Alpha Omega

shared collection
243 papers 100 to 500 followers Collection of articles on biology, biochemistry, nutrition, medicine, immunology, genetics, oncology, microbiology, etc. For Carolina!
Gladys Kostyrka
Important roles in origin of life (OL) scenarios have been and still are attributed to viruses. Yet the strict dependence of viruses on cells for their multiplication has been widely acknowledged since the first decades of the 20th century. How could viruses play critical roles in the OL if life relies on cellular organization and if viruses are defined as parasites of cells? In other words, how could viruses play a role in the emergence of cellular life if the existence of cells is a prerequisite for the existence of viruses? This paper investigates this issue and describes past and current OL scenarios conferring viruses with important roles, thereby completing the work of historian of science and physician Scott Podolsky who identified three major roles of viruses in past OL scenarios...
October 2016: Studies in History and Philosophy of Biological and Biomedical Sciences
Michael Lynch, Georgi K Marinov
The evolution of the eukaryotic cell marked a profound moment in Earth's history, with most of the visible biota coming to rely on intracellular membrane-bound organelles. It has been suggested that this evolutionary transition was critically dependent on the movement of ATP synthesis from the cell surface to mitochondrial membranes and the resultant boost to the energetic capacity of eukaryotic cells. However, contrary to this hypothesis, numerous lines of evidence suggest that eukaryotes are no more bioenergetically efficient than prokaryotes...
March 16, 2017: ELife
Nicolas Demaurex, Manon Rosselin
Dong et al. (2017) establish how the mitochondrial Ca2+ uniporter (MCU) integrates Ca2+ and oxidative stress signals by identifying a cysteine residue that controls MCU channel activity, a mechanism causing mitochondrial Ca2+ overload and cell death during oxidative stress.
March 16, 2017: Molecular Cell
Supreet Sethi, Jua Choi, Mieko Toyoda, Ashley Vo, Alice Peng, Stanley C Jordan
HLA (Human Leucocyte Antigen) sensitization is a significant barrier to successful kidney transplantation. It often translates into difficult crossmatch before transplant and increased risk of acute and chronic antibody mediated rejection after transplant. Over the last decade, several immunomodulatory therapies have emerged allowing for increased access to kidney transplantation for the immunologically disadvantaged group of HLA sensitized end stage kidney disease patients. These include IgG inactivating agents, anti-cytokine antibodies, costimulatory molecule blockers, complement inhibitors, and agents targeting plasma cells...
2017: Journal of Immunology Research
Yaniv Erlich, Dina Zielinski
DNA is an attractive medium to store digital information. Here we report a storage strategy, called DNA Fountain, that is highly robust and approaches the information capacity per nucleotide. Using our approach, we stored a full computer operating system, movie, and other files with a total of 2.14 × 106 bytes in DNA oligonucleotides and perfectly retrieved the information from a sequencing coverage equivalent to a single tile of Illumina sequencing. We also tested a process that can allow 2.18 × 1015 retrievals using the original DNA sample and were able to perfectly decode the data...
March 3, 2017: Science
Arthur W Lambert, Diwakar R Pattabiraman, Robert A Weinberg
Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and we highlight the general principles of metastasis that have begun to emerge...
February 9, 2017: Cell
S C Bergheanu, M C Bodde, J W Jukema
Recent years have brought a significant amount of new results in the field of atherosclerosis. A better understanding of the role of different lipoprotein particles in the formation of atherosclerotic plaques is now possible. Recent cardiovascular clinical trials have also shed more light upon the efficacy and safety of novel compounds targeting the main pathways of atherosclerosis and its cardiovascular complications.In this review, we first provide a background consisting of the current understanding of the pathophysiology and treatment of atherosclerotic disease, followed by our future perspectives on several novel classes of drugs that target atherosclerosis...
April 2017: Netherlands Heart Journal
Nita Gandhi Forouhi, Nicholas J Wareham
The disease burden related to diabetes is high and rising in every country, fuelled by the global rise in the prevalence of obesity and unhealthy lifestyles. The latest estimates show a global prevalence of 382 million people with diabetes in 2013, expected to rise to 592 million by 2035. The aetiological classification of diabetes has now been widely accepted. Type 1 and type 2 diabetes are the two main types, with type 2 diabetes accounting for the majority (>85%) of total diabetes prevalence. Both forms of diabetes can lead to multisystem complications of microvascular endpoints, including retinopathy, nephropathy and neuropathy, and macrovascular endpoints including ischaemic heart disease, stroke and peripheral vascular disease...
December 2014: Medicine (Abingdon, UK Edition)
Joshua T McNamara, Jacob L W Morgan, Jochen Zimmer
Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge...
2015: Annual Review of Biochemistry
Graham F Hatfull
Bacteriophages are the most abundant biological entities in the biosphere, and this dynamic and old population is, not surprisingly, highly diverse genetically. Relative to bacterial genomics, phage genomics has advanced slowly, and a higher-resolution picture of the phagosphere is only just emerging. This view reveals substantial diversity even among phages known to infect a common host strain, but the relationships are complex, with mosaic genomic architectures generated by illegitimate recombination over a long period of evolutionary history...
August 2015: Journal of Virology
T P Robinson, D P Bu, J Carrique-Mas, E M Fèvre, M Gilbert, D Grace, S I Hay, J Jiwakanon, M Kakkar, S Kariuki, R Laxminarayan, J Lubroth, U Magnusson, P Thi Ngoc, T P Van Boeckel, M E J Woolhouse
No abstract text is available yet for this article.
July 2016: Transactions of the Royal Society of Tropical Medicine and Hygiene
Maria V Liberti, Jason W Locasale
No abstract text is available yet for this article.
July 19, 2016: Nature Chemical Biology
Tom M McLellan, John A Caldwell, Harris R Lieberman
Caffeine is consumed by over 80% of U.S. adults. This review examines the effects caffeine has on cognitive and physical function, since most real-world activities require complex decision making, motor processing and movement. Caffeine exerts its effects by blocking adenosine receptors. Following low (∼40mg or ∼0.5mgkg-1 ) to moderate (∼300mg or 4mgkg-1 ) caffeine doses, alertness, vigilance, attention, reaction time and attention improve, but less consistent effects are observed on memory and higher-order executive function, such as judgment and decision making...
December 2016: Neuroscience and Biobehavioral Reviews
Sejal Vyas, Elma Zaganjor, Marcia C Haigis
Mitochondria are bioenergetic, biosynthetic, and signaling organelles that are integral in stress sensing to allow for cellular adaptation to the environment. Therefore, it is not surprising that mitochondria are important mediators of tumorigenesis, as this process requires flexibility to adapt to cellular and environmental alterations in addition to cancer treatments. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation, including mitochondrial biogenesis and turnover, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling...
July 28, 2016: Cell
Cristin E Kearns, Laura A Schmidt, Stanton A Glantz
Early warning signals of the coronary heart disease (CHD) risk of sugar (sucrose) emerged in the 1950s. We examined Sugar Research Foundation (SRF) internal documents, historical reports, and statements relevant to early debates about the dietary causes of CHD and assembled findings chronologically into a narrative case study. The SRF sponsored its first CHD research project in 1965, a literature review published in the New England Journal of Medicine, which singled out fat and cholesterol as the dietary causes of CHD and downplayed evidence that sucrose consumption was also a risk factor...
November 1, 2016: JAMA Internal Medicine
Wentao Ma
Although biology has achieved great successes in recent years, we have not got a clear idea on "what is life?" Actually, as explained here, the main reason for this situation is that there are two completely distinct aspects for "life", which are usually talked about together. Indeed, in respect to these two aspects: Darwinian evolution and self-sustaining, we must split the concept of life correspondingly, for example, by defining "life form" and "living entity", separately. For life's implementation (related to the two aspects) in nature, three mechanisms are crucial: the replication of DNA/RNA-like polymers by residue-pairing, the sequence-dependent folding of RNA/protein-like polymers engendering special functions, and the assembly of phospholipid-like amphiphiles forming vesicles...
September 26, 2016: Biology Direct
Ruedi Aebersold, Matthias Mann
Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-order structures and networks. For decades, the structures and functions of selected proteins have been studied using biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights into the composition, structure, function and control of the proteome, shedding light on complex biological processes and phenotypes...
September 15, 2016: Nature
Anna Raffaello, Cristina Mammucari, Gaia Gherardi, Rosario Rizzuto
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling...
December 2016: Trends in Biochemical Sciences
Sander Greenland, Stephen J Senn, Kenneth J Rothman, John B Carlin, Charles Poole, Steven N Goodman, Douglas G Altman
Misinterpretation and abuse of statistical tests, confidence intervals, and statistical power have been decried for decades, yet remain rampant. A key problem is that there are no interpretations of these concepts that are at once simple, intuitive, correct, and foolproof. Instead, correct use and interpretation of these statistics requires an attention to detail which seems to tax the patience of working scientists. This high cognitive demand has led to an epidemic of shortcut definitions and interpretations that are simply wrong, sometimes disastrously so-and yet these misinterpretations dominate much of the scientific literature...
April 2016: European Journal of Epidemiology
Ignat Printsev, Daniel Curiel, Kermit L Carraway
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need...
August 2017: Journal of Membrane Biology
2017-02-12 23:52:47
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"