Read by QxMD icon Read


shared collection
38 papers 25 to 100 followers
By Isabel Acosta-Ochoa Nephrology senior staff. Valladolid. Spain
Ke Wang, Bryan Kestenbaum
No abstract text is available yet for this article.
March 12, 2019: American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation
Donald J Marsh, Dmitry D Postnov, Olga V Sosnovtseva, Niels-Henrik Holstein-Rathlou
Tubuloglomerular feedback and the myogenic mechanism form an ensemble in renal afferent arterioles that regulates single nephron blood flow and glomerular filtration. Each mechanism generates a self-sustained oscillation, the mechanisms interact, and the oscillations synchronize. The synchronization generates a bimodal electrical signal in the arteriolar wall that propagates retrograde to a vascular node where it meets similar electrical signals from other nephrons. Each signal carries information about the time dependent behavior of the regulatory ensemble...
February 13, 2019: American Journal of Physiology. Renal Physiology
Miriam Zacchia, Giovanna Capolongo, Luca Rinaldi, Giovambattista Capasso
The thick ascending limb (TAL) of Henle's loop is a crucial segment for many tasks of the nephron. Indeed, the TAL is not only a mainstay for reabsorption of sodium (Na+ ), potassium (K+ ), and divalent cations such as calcium (Ca2+ ) and magnesium (Mg2+ ) from the luminal fluid, but also has an important role in urine concentration, overall acid-base homeostasis, and ammonia cycle. Transcellular Na+ transport along the TAL is a prerequisite for Na+ , K+ , Ca2+ , Mg2+ homeostasis, and water reabsorption, the latter through its contribution in the generation of the cortico-medullar osmotic gradient...
2018: International Journal of Nephrology and Renovascular Disease
Ruochen Qi, Cheng Yang
Renal fibrosis, especially tubulointerstitial fibrosis, is the inevitable outcome of all progressive chronic kidney diseases (CKDs) and exerts a great health burden worldwide. For a long time, interests in renal fibrosis have been concentrated on fibroblasts and myofibroblasts. However, in recent years, growing numbers of studies have focused on the role of tubular epithelial cells (TECs). TECs, rather than a victim or bystander, are probably a neglected mediator in renal fibrosis, responding to a variety of injuries...
November 13, 2018: Cell Death & Disease
Christopher R Neal, Kenton P Arkill, James S Bell, Kai B Betteridge, David O Bates, C Peter Winlove, Andrew H J Salmon, Steven J Harper
To investigate human glomerular structure under conditions of physiological perfusion, we have analyzed fresh and perfusion-fixed normal human glomeruli at physiological hydrostatic and oncotic pressures using serial resin section reconstruction, confocal, multiphoton, and electron microscope imaging. Afferent and efferent arterioles (21.5 ± 1.2 µm and 15.9 ± 1.2 µm diameter), recognized from vascular origins, lead into previously undescribed wider regions (43.2 ± 2.8 µm and 38.4 ± 4...
November 1, 2018: American Journal of Physiology. Renal Physiology
Ellen F Carney
No abstract text is available yet for this article.
January 2019: Nature Reviews. Nephrology
Jiayi Wang, Jianyong Zhong, Hai-Chun Yang, Agnes B Fogo
Tubular injury sensitizes glomeruli to injury. We review potential mechanisms of this tubuloglomerular cross talk. In the same nephron, tubular injury can cause stenosis of the glomerulotubular junction and finally result in atubular glomeruli. Tubular injury also affects glomerular filtration function through tubuloglomerular feedback. Progenitor cells, that is, parietal epithelial cells and renin positive cells, can be involved in repair of injured glomeruli and also may be modulated by tubular injury. Loss of nephrons induces additional workload and stress on remaining nephrons...
August 29, 2018: Toxicologic Pathology
Gabrielle G Gilmer, Venkatesh Deshpande, Chung-Ling Chou, Mark A Knepper
The Reynolds number in the renal tubule is extremely low, consistent with laminar flow. Consequently, luminal flow can be described by the Hagen-Poiseuille laminar flow equation. This equation calculates the volumetric flow rate from values of the axial pressure gradient and flow resistance, which is dependent on the length and diameter of each renal tubule segment. Our goal was to calculate the pressure drop along each segment of the renal tubule and determine the points of highest resistance. When the Hagen-Poiseuille equation was used for rat superficial nephrons based on known flow rates, tubule lengths, and diameters for each renal tubule segment, it was found that maximum pressure drop occurred in two segments: the thin descending limbs of Henle and the inner medullary collecting ducts...
August 8, 2018: American Journal of Physiology. Renal Physiology
Wilhelm Kriz
No abstract text is available yet for this article.
April 2018: Journal of the American Society of Nephrology: JASN
Ke Wang, Bryan Kestenbaum
The secretion of small molecules by the proximal tubules of the kidneys represents a vital homeostatic function for rapidly clearing endogenous solutes and medications from the circulation. After filtration at the glomerulus, renal blood flow is directed through a network of peritubular capillaries, where transporters of the proximal tubules actively secrete putative uremic toxins and hundreds of commonly prescribed drugs into the urine, including protein-bound substances that cannot readily cross the glomerular basement membrane...
August 7, 2018: Clinical Journal of the American Society of Nephrology: CJASN
H Wiig, F C Luft, J M Titze
The role of salt in the pathogenesis of arterial hypertension is not well understood. According to the current understanding, the central mechanism for blood pressure (BP) regulation relies on classical studies linking BP and Na+ balance, placing the kidney at the very centre of long-term BP regulation. To maintain BP homeostasis, the effective circulating fluid volume and thereby body Na+ content has to be maintained within very narrow limits. From recent work in humans and rats, the notion has emerged that Na+ could be stored somewhere in the body without commensurate water retention to buffer free extracellular Na+ and that previously unidentified extrarenal, tissue-specific regulatory mechanisms are operative regulating the release and storage of Na+ from a kidney-independent reservoir...
March 2018: Acta Physiologica
Dario R Lemos, Graham Marsh, Angela Huang, Gabriela Campanholle, Takahide Aburatani, Lan Dang, Ivan Gomez, Ken Fisher, Giovanni Ligresti, Janos Peti-Peterdi, Jeremy S Duffield
Pericytes are tissue-resident mesenchymal progenitor cells anatomically associated with the vasculature that have been shown to participate in tissue regeneration. Here, we tested the hypothesis that kidney pericytes, derived from FoxD1+ mesodermal progenitors during embryogenesis, are necessary for postnatal kidney homeostasis. Diphtheria toxin delivery to FoxD1Cre::RsDTR transgenic mice resulted in selective ablation of >90% of kidney pericytes but not other cell lineages. Abrupt increases in plasma creatinine, blood urea nitrogen, and albuminuria within 96 h indicated acute kidney injury in pericyte-ablated mice...
December 1, 2016: American Journal of Physiology. Renal Physiology
Sandeep K Mallipattu, John C He
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury contributes to the onset and progression of glomerular diseases such as minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), diabetic nephropathy, and HIV-associated nephropathy (HIVAN)...
July 1, 2016: American Journal of Physiology. Renal Physiology
Ellen F Carney
No abstract text is available yet for this article.
June 2016: Nature Reviews. Nephrology
A Richard Kitching, Holly L Hutton
Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others...
September 7, 2016: Clinical Journal of the American Society of Nephrology: CJASN
Wilna Oosthuyzen, Kathleen M Scullion, Jessica R Ivy, Emma E Morrison, Robert W Hunter, Philip J Starkey Lewis, Eoghan O'Duibhir, Jonathan M Street, Andrea Caporali, Christopher D Gregory, Stuart J Forbes, David J Webb, Matthew A Bailey, James W Dear
Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11 ) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin...
November 2016: Journal of the American Society of Nephrology: JASN
David A Ferenbach, Joseph V Bonventre
PURPOSE OF REVIEW: The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS: Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development...
May 2016: Current Opinion in Nephrology and Hypertension
Jerome Lowenstein, Jared J Grantham
The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured...
June 1, 2016: American Journal of Physiology. Renal Physiology
Giovanni Ligresti, Ryan J Nagao, Jun Xue, Yoon Jung Choi, Jin Xu, Shuyu Ren, Takahide Aburatani, Susan K Anderson, James W MacDonald, Theo K Bammler, Stephen M Schwartz, Kimberly A Muczynski, Jeremy S Duffield, Jonathan Himmelfarb, Ying Zheng
Human kidney peritubular capillaries are particularly susceptible to injury, resulting in dysregulated angiogenesis, capillary rarefaction and regression, and progressive loss of kidney function. However, little is known about the structure and function of human kidney microvasculature. Here, we isolated, purified, and characterized human kidney peritubular microvascular endothelial cells (HKMECs) and reconstituted a three-dimensional human kidney microvasculature in a flow-directed microphysiologic system...
August 2016: Journal of the American Society of Nephrology: JASN
Sanjay K Nigam, Wei Wu, Kevin T Bush, Melanie P Hoenig, Roland C Blantz, Vibha Bhatnagar
The proximal tubule of the kidney plays a crucial role in the renal handling of drugs (e.g., diuretics), uremic toxins (e.g., indoxyl sulfate), environmental toxins (e.g., mercury, aristolochic acid), metabolites (e.g., uric acid), dietary compounds, and signaling molecules. This process is dependent on many multispecific transporters of the solute carrier (SLC) superfamily, including organic anion transporter (OAT) and organic cation transporter (OCT) subfamilies, and the ATP-binding cassette (ABC) superfamily...
November 6, 2015: Clinical Journal of the American Society of Nephrology: CJASN
2015-10-26 15:58:37
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"