JOURNAL ARTICLE

Distinct effects of Jak3 signaling on alphabeta and gammadelta thymocyte development

E E Eynon, F Livák, K Kuida, D G Schatz, R A Flavell
Journal of Immunology 1999 February 1, 162 (3): 1448-59
9973401
Janus kinase 3 (Jak3) plays a central role in the transduction of signals mediated by the IL-2 family of cytokine receptors. Targeted deletion of the murine Jak3 gene results in severe reduction of alphabeta and complete elimination of gammadelta lineage thymocytes and NK cells. The developmental blockade appears to be imposed on early thymocyte differentiation and/or expansion. In this study, we show that bcl-2 expression and in vivo survival of immature thymocytes are greatly compromised in Jak3-/- mice. There is no gross deficiency in rearrangements of the TCRdelta and certain gamma loci in pre-T cells, and a functional gammadelta TCR transgene cannot rescue gammadelta lineage differentiation in Jak3-/- mice. In contrast, a TCRbeta transgene is partially able to restore alphabeta thymocyte development. These data suggest that the signals mediated by Jak3 are critical for survival of all thymocyte precursors particularly during TCRbeta-chain gene rearrangement, and are continuously required in the gammadelta lineage. The results also emphasize the fundamentally different requirements for differentiation of the alphabeta and gammadelta T cell lineages.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
9973401
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"