JOURNAL ARTICLE

Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging

H J Wester, M Herz, W Weber, P Heiss, R Senekowitsch-Schmidtke, M Schwaiger, G Stöcklin
Journal of Nuclear Medicine 1999, 40 (1): 205-12
9935078

UNLABELLED: The aim of the study was to develop a simple 18F-labeled amino acid as a PET tracer for cerebral and peripheral tumors. O-(2-[18F]fluoroethyl)-L-tyrosine (L-[18F]FET) was synthesized and biologically evaluated. Results of the first human PET study are reported.

METHODS: No carrier added (n.c.a.) and D-[18F]FET were prepared by 18F-fluoroethylation of L- and D-tyrosine in a two-step procedure. Biodistribution studies were performed in mice. The metabolic fate of L-[18F]FET was investigated in plasma, brain, tumor and pancreatic tissue samples using chromatographic procedures. Tumor uptake studies were performed in mammary carcinoma-bearing mice and in mice with the colon carcinoma SW 707. In a human PET study, a 59-y-old man with a recurrent astrocytoma was imaged using n.c.a. L-[18F]FET.

RESULTS: Synthesis of [18F]FET was accomplished in about 50 min with an overall radiochemical yield of 40%. The uptake of L-[18F]FET in the brain of mice reached a level >2% ID/g between 30 and 60 min postinjection. The brain uptake of the D-isomer was negligible, indicating blood-brain barrier penetration by a specific amino acid transport system. L-[18F]FET is not incorporated into proteins. High-performance liquid chromatography (HPLC) analysis of brain, pancreas and tumor homogenates as well as plasma samples of mice at 10, 40 or 60 min postinjection showed only unchanged L-[18F]FET. Activity uptake in the bone did not exceed 2% ID/g at 40 min postinjection. The brain uptake of L-[18F]FET in mice bearing mammary carcinomas and colon carcinomas reached 7.1%+/-1.2% ID/g and 6.4%+/-1.7% ID/g 1h postinjection, respectively. In the first human study, L-[18F]FET-PET allowed a clear delineation of a recurrent astrocytoma. Thirty-five minutes postinjection, the tumor-to-cortex ratio was >2.7. A tumor-to-blood ratio >1.5 was reached at 30 min postinjection and continued to increase. No significant activity accumulation was observed in peripheral organs after approximately 40 min postinjection.

CONCLUSION: The high in vivo stability of L-[18F]FET, its fast brain and tumor uptake kinetics, its low accumulation in nontumor tissue and its ease of synthesis strongly support further evaluation of L-[18F]FET as an amino acid tracer for cerebral and peripheral tumors.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
9935078
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"