Add like
Add dislike
Add to saved papers

Methyl mercury-induced autoimmunity in mice.

Female SJL/N, A.SW, B10.S (H-2s), BALB/C, DBA/2 (H-2d), A.TL and B10. TL (H-2t1) mice were treated with sc injections of 1.0 mg CH3HgCl/kg body weight every third day for 4 weeks. Controls were given sterile, isotonic NaCl. CH3HgCl (MeHg) induced in SJL, A.SW and B10.S mice antinucleolar antibodies (ANoA) targeting the nucleolar 34-kDa protein fibrillarin. The susceptibility to develop ANoA in response to MeHg was linked to the mouse major histocompatibility complex (H-2), since H-2s but not H-2t1 mice sharing background (non-H-2) genes developed ANoA. However, the background genes decided the strength of the ANoA response in the susceptible H-2s mice, and the ANoA titer was in the order: A.SW > SJL > B10.S. Although MeHg as well as inorganic mercury induced ANoA, the two forms of mercury differed both quantitatively and qualitatively in their effect on the immune system. MeHg induced in H-2s mice a weaker general (polyclonal) and specific (ANoA) B-cell response than HgCl2, probably due to weaker activation of Th2 cells with lower IL-4 production, as indicated by the minimal increase in serum IgE. The A. TL strain with a susceptible genetic background, but a H-2 haplotype resistant to HgCl2, responded to MeHg with a modest polyclonal B-cell response dominated by Th1-associated Ig isotypes. H-2s mice treated with MeHg showed in contrast to HgCl2-treated mice no systemic immune-complex (IC) deposits, which may be due to the weaker immune activation after MeHg treatment. The increase in serum IgE concentration and ANoA titer 2-6 weeks after stopping treatment with MeHg is identical to reactions during the first 2-3 weeks of HgCl2 treatment. Therefore, demethylation of MeHg probably increased the concentration of inorganic mercury in the body sufficiently to reactivate the immune system. This reactivation indicated that genetically susceptible mice are not resistant to challenge with mercury, making them distinctly different from rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app