Add like
Add dislike
Add to saved papers

Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.

Nature Genetics 1999 January
Densely methylated DNA associates with transcriptionally repressive chromatin characterized by the presence of underacetylated histones. Recently, these two epigenetic processes have been dynamically linked. The methyl-CpG-binding protein MeCP2 appears to reside in a complex with histone deacetylase activity. MeCP2 can mediate formation of transcriptionally repressive chromatin on methylated promoter templates in vitro, and this process can be reversed by trichostatin A (TSA), a specific inhibitor of histone deacetylase. Little is known, however, about the relative roles of methylation and histone deacetylase activity in the stable inhibition of transcription on densely methylated endogenous promoters, such as those for silenced alleles of imprinted genes, genes on the female inactive X chromosome and tumour-suppressor genes inactivated in cancer cells. We show here that the hypermethylated genes MLH1, TIMP3 (TIMP3), CDKN2B (INK4B, p15) and CDKN2A (INK4, p16) cannot be transcriptionally reactivated with TSA alone in tumour cells in which we have shown that TSA alone can upregulate the expression of non-methylated genes. Following minimal demethylation and slight gene reactivation in the presence of low dose 5-aza-2'deoxycytidine (5Aza-dC), however, TSA treatment results in robust re-expression of each gene. TSA does not contribute to demethylation of the genes, and none of the treatments alter the chromatin structure associated with the hypermethylated promoters. Thus, although DNA methylation and histone deacetylation appear to act as synergistic layers for the silencing of genes in cancer, dense CpG island methylation is dominant for the stable maintenance of a silent state at these loci.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app