JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis.

Hemangiomas are benign vascular tumors of childhood that can lead to disfigurement and/or life-threatening consequences. The pathogenesis of hemangioma formation is likely to involve increased angiogenesis. Basic fibroblast growth factor and vascular endothelial growth factor are cytokines that stimulate angiogenesis in multiple in vivo and in vitro models. Proliferative hemangiomas have been found to have elevated levels of basic fibroblast growth factor and vascular endothelial growth factor protein, but the gene expression of these cytokines in human specimens has not been previously studied. We examined the gene expression and spatial distribution of basic fibroblast growth factor and vascular endothelial growth factor messenger RNA in proliferative versus involuted human hemangioma specimens using nonisotopic in situ hybridization techniques. Thirteen hemangioma specimens were harvested during initial surgical excision. In situ hybridization was performed on frozen sections of both proliferative and involuted hemangioma specimens using genetically engineered antisense probes specific for basic fibroblast growth factor and vascular endothelial growth factor messenger RNA. Controls were an interleukin-6 sense sequence and a transforming growth factor-beta 1 antisense sequence. A large number of cells within the specimens of proliferative hemangiomas revealed localized gene expression of basic fibroblast growth factor and vascular endothelial growth factor messenger RNA (626 +/- 129 and 1660 +/- 371 cells/mm2, respectively). The majority of the cells were endothelial in origin. In contrast, involuted hemangioma specimens revealed significantly lower numbers of cells staining positive for basic fibroblast growth factor and vascular endothelial growth factor messenger RNA (44 +/- 11 and 431 +/- 76 cells/mm2, respectively; p < 0.05). Transforming growth factor-beta 1 messenger RNA was slightly more expressed by involuted hemangiomas (117 +/- 30 cells/mm2). There were very low levels of transforming growth factor-beta 1 gene expression from proliferative hemangiomas (37 +/- 24 cells/mm2; p < 0.02). These data demonstrate that (1) in situ hybridization allows identification and relative quantitation of cells expressing messenger RNA for specific growth factors in human hemangioma specimens; (2) basic fibroblast growth factor and vascular endothelial growth factor messenger RNA are up-regulated in proliferative hemangiomas; and (3) transforming growth factor-beta 1 messenger RNA remains low in both proliferative and involuted hemangiomas. Because basic fibroblast growth factor and vascular endothelial growth factor messenger RNA have been implicated in the pathobiology of human hemangioma formation, biochemical modulation of these angiogenic cytokines may eventually help inhibit proliferation and promote regression of hemangiomas.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app