CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of glucose-water ingestion on exercise thermoregulation in men dehydrated after water immersion.

BACKGROUND: The influence of non-ionic osmols on thermoregulation is unclear.

HYPOTHESIS: Hyperglycemia will attenuate the rise in exercise core temperature.

METHODS: Dehydrated by 4-h of water immersion (34.5 degrees C) to the neck, 6 men, (35+/-SD 7 yr) participated in each of three trials where 2.0 g x kg(-1) body wt of oral glucose (33.8% weight per volume) was consumed followed by 80 min supine rest (Glu/Rest), or 70 min supine cycle exercise at 62.8%+/-SE 0.5% (1.97+/-0.02 L x min(-1)) peak O2 uptake, followed by 10 min supine recovery with prior (Glu/Ex) or without glucose (No Glu/Ex) ingestion. Blood samples were taken periodically for measurement of Hb, Hct, Na+, K+, Osm, and glucose; mean skin (Tsk) and rectal (Tre) temperatures, and sweating rate (resistance hygrometry) and skin blood velocity (laser Doppler) were measured intermittently.

RESULTS: Mean percent changes in plasma volume (p<0.05) for the exercise trials were not different: -12.3+/-2.2% (No Glu/Ex) and -12.1+/-2.1% (Glu/Ex). Mean (+/-SE) pre-exercise plasma [glucose] for Glu/Ex was higher than that of No Glu/Ex (108.4+/-3.9 vs. 85.6+/-1.6 mg x dL(-1), respectively, p<0.05). Glu/Ex vs. No Glu/Ex data, respectively, at the end of exercise indicated that: Tre was lower by 0.4 degrees C (38.2+/-0.2 vs. 38.6+/-0.1 degrees C, p<0.05), Tsk was lower (32.0+/-0.3 vs. 32.4+/-0.2 degrees C, p<0.05), forearm sweating rate was lower (0.94+/-0.09 vs. 1.05+/-0.07 mg x cm(-2) x min(-1), p<0.05); and head (temporal) skin blood velocity was not different (1.67+/-0.21 vs. 1.51+/-0.24 Hz x 10(3), NS).

CONCLUSIONS: Elevation of plasma [glucose] prior to supine submaximal exercise in dehydrated men attenuates the increase of Tre without alteration of heat production, total body sweating, serum electrolytes and osmolality, or exercise-induced hypoglycemia: the mechanism may be enhanced peripheral blood flow that could enhance body heat loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app