JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.

Spiral wave breakup is a proposed mechanism underlying the transition from ventricular tachycardia to fibrillation. We examined the importance of the restitution of action potential duration (APD) and of conduction velocity (CV) to the stability of spiral wave reentry in a two-dimensional sheet of simulated cardiac tissue. The Luo-Rudy ventricular action potential model was modified to eliminate its restitution properties, which are caused by deactivation or recovery from inactivation of K+, Ca2+, and Na+ currents (IK, ICa, and INa, respectively). In this model, we find that 1) restitution of ICa and INa are the main determinants of the steepness of APD restitution; 2) for promoting spiral breakup, the range of diastolic intervals over which the APD restitution slope is steep is more important than the maximum steepness; 3) CV restitution promotes spiral wave breakup independently of APD restitution; and 4) "defibrillation" of multiple spiral wave reentry is most effectively achieved by combining an antifibrillatory intervention based on altering restitution with an antitachycardia intervention. These findings suggest a novel paradigm for developing effective antiarrhythmic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app