JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Central nervous system structure and function in Sturge-Weber syndrome: evidence of neurologic and radiologic progression.
Journal of Child Neurology 1998 December
Sturge-Weber syndrome is characterized by the presence of a port-wine nevus, epilepsy, stroke-like episodes, headache, and developmental delay. We studied 20 cases to test the hypothesis that decreased cerebral blood flow alters neurologic function by affecting cellular glucose metabolism. Group A consisted of 10 patients with a mean age of 1.75 years and early seizure onset (6.8 months), whereas group B was composed of older patients (mean age, 15.3 years) with later onset of seizures (3.7 years). Neurologic disease was more severe in group A, but group B had more widespread structural brain defects - shown on computed tomographic scans and magnetic resonance imaging - and metabolic brain defects shown on hexamethylpropyleneamine oxime and [18F] fluorodeoxyglucose single photon emission computed tomographic scans. Six group A cases had hypoperfusion at baseline and five of nine had worsening of perfusion and glucose metabolism 1 year later. A total of 119 stroke-like episodes occurred in six group A cases and eight group B cases; there were 65% fewer strokes in children treated with aspirin. The data suggest that progressive hypoperfusion and glucose hypometabolism are associated with neurologic deterioration in Sturge-Weber syndrome. Longitudinal studies are needed to better define the natural history of disease and to evaluate the safety and efficacy of aspirin therapy.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app