IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of nitric oxide in vascular hyper-responsiveness to norepinephrine in hypertensive Dahl rats.

OBJECTIVE: To determine whether the abnormal vascular responses observed in salt-sensitive hypertension are caused by an impairment in vascular nitric oxide function.

DESIGN: Isometric tension was measured in aortic rings isolated from Dahl salt-sensitive and salt-resistant rats fed a regular-salt (0.4% NaCl) or a high-salt (8% NaCl) diet, with and without inhibition of endogenous nitric oxide synthesis.

METHODS AND RESULTS: Systolic arterial pressure, measured weekly by the tail-cuff method, increased markedly in DS rats with a high-salt diet but did not increase in the other groups. In aortic rings, norepinephrine evoked dose-dependent contractions which were significantly increased in rings from DS rats with a high-salt diet Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, increased the norepinephrine-induced contraction in all groups and abolished differences in contractile responses between high-salt DS rats and the other groups. Acetylcholine induced endothelium-dependent relaxation, which was significantly depressed in high-salt DS rats. L-NAME attenuated the acetylcholine-induced relaxation in all groups and abolished the difference in relaxation response between high-salt DS rats and the other groups. Sodium nitroprusside-induced relaxation was significantly depressed in high-salt DS rats.

CONCLUSIONS: Vascular hypercontractile responses to norepinephrine in DS hypertensive rats can, in part, be explained by an impairment in endothelial nitric oxide production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app