Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord.

Neuroscience Letters 1998 October 24
Actions of capsaicin were examined on synaptic transmissions in the substantia gelatinosa (SG) of adult rat spinal cord slices using the whole-cell patch-recording technique. Bath-applied capsaicin at a concentration of 2 microM activated a slow inward current (having an amplitude of 33 pA at -70 mV), which was accompanied by an increase in the frequency of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs; by 234%); these actions were blocked by a capsaicin-receptor antagonist, capsazepine (10 microM). The capsaicin-induced increase in sEPSC frequency was resistant to tetrodotoxin (0.5-1 microM). On the other hand, capsaicin (2 microM) did not affect either glycine- or gamma-aminobutyric acid-mediated spontaneous synaptic transmission. The results indicate that capsaicin enhances excitatory but not inhibitory synaptic transmission, possibly through a direct action on primary afferent terminals in the SG. As the SG has been thought to participate in nociceptive pathway, it is suggested that such a presynaptic action of capsaicin contributes to nociceptive transmissions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app