Add like
Add dislike
Add to saved papers

Low-molecular-weight heparin in the treatment of deep venous thrombosis.

Traditionally, acute deep venous thrombosis (DVT) is treated with intravenous heparin followed by oral anticoagulants. With the advent of the low-molecular-weight heparins (LMWHs), this strategy is changing dramatically. LMWHs are compounds derived from standard unfractionated heparin that offer distinct clinical advantages over unfractionated heparin, including better bioavailability, longer half-life, and a more predictable anticoagulant response that obviates the need for laboratory monitoring. The common side effects of unfractionated heparin, including bleeding, thrombocytopenia, and osteoporosis, may be less common with LMWH. For the treatment of established venous thromboembolism, LMWH is at least as safe and effective as unfractionated heparin. Recent studies demonstrate that home therapy of DVT with LMWH, compared with inpatient therapy with unfractionated heparin, produces comparable clinical outcomes and patient satisfaction, with dramatic cost savings. With careful patient selection, home therapy of venous thromboembolism is quickly becoming the new standard of care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app