Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Charge transfer and transport in DNA.

We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)-bridge ([Bj])-acceptor (a) system, where [Bj] = B1,B2, . , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*[Bj]a --> d[Bj]a+/-, and (ii) multistep charge transport involves charge injection from d* (or d+) to [Bj], charge hopping within [Bj], and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence approximately exp(-betaR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime tau approximately Neta and yield Y approximately (1 + Neta)-1 exhibiting a weak (algebraic) N and distance dependence. The power parameter eta is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state dB1+/-B2 . BNa relative to the electronically excited donor doorway state d*B1B2 . BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic-dynamic relations, in conjunction with the energetic data for d*/d- and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for "chemistry at a distance" after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app