Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparison of air displacement plethysmography with dual-energy X-ray absorptiometry and 3 field methods for estimating body composition in middle-aged men.

This study was designed to compare air displacement plethysmography with dual-energy X-ray absorptiometry (DXA) and 3 other field methods for estimation of body composition. Subjects were 62 healthy, white men aged 37.6+/-2.9 y (weight: 81.8+/-11.3 kg; height: 171.5+/-4.9 cm). Body composition was also assessed by using body mass index, single-frequency bioelectrical impedance analysis, multi-frequency bioelectrical impedance spectroscopy, and the skinfold-thickness equations of Jackson and Pollock and Durnin and Womersley. Percentage body fat (%BF) with the plethysmograph was 23.4+/-7.0 and with DXA was 26.0+/-7.4. The 2.6% mean difference was significant (P< 0.05). Total error was 3.7%BF. As assessed by multiple regression analysis, %BF with the plethysmograph, age, weight, and height yielded a DXA-adjusted R2 value of 89.5% fat and an SEE of 2.4% fat. All other models had higher SEEs and lower adjusted R2 values: 4.3% and 66.5% for body mass index, 3.3% and 79.8% for bioelectrical impedance analysis, 3.6% and 76.2% for bioelectrical impedance spectroscopy, 3.7% and 74.55% for the equations of Jackson and Pollock, and 3.9% and 71.6% for the equations of Durnin and Womersley, respectively. The plethysmograph also predicted fat mass and fat-free mass more accurately than all other models, with a lower SEE and higher adjusted R2 value. In conclusion, although %BF was systematically underestimated, body composition was closely estimated with air displacement plethysmography in middle-aged men.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app