Add like
Add dislike
Add to saved papers

Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R.

Human serum paraoxonase (PON 1) exists in 2 major polymorphic forms (Q and R), which differ in the amino acid at position 191 (glutamine and arginine, respectively). These PON allozymes hydrolyze organophosphates and aromatic esters, and both also protect LDL from copper ion-induced oxidation. We have compared purified serum PONs of both forms and evaluated their effects on LDL oxidation, in respect to their arylesterase/paraoxonase activities. Copper ion-induced LDL oxidation, measured by the production of peroxides and aldehydes after 4 hours of incubation, were reduced up to 61% and 58%, respectively, by PON Q, but only up to 46% and 38%, respectively, by an equivalent concentration of PON R. These phenomena were PON-concentration dependent. Recombinant PON Q and PON R demonstrated similar patterns to that shown for the purified serum allozymes. PON Q and PON R differences in protection of LDL against oxidation were further evaluated in the presence of glutathione peroxidase (GPx). GPx (0.1 U/mL) alone reduced copper ion-induced LDL oxidation by 20% after 4 hours of incubation. The addition of PON R to the above system resulted in an additive inhibitory effect on LDL oxidation, whereas PON Q had no such additive effect. The 2 PON allozymes also differed by their ability to inhibit initiation, as well as propagation, of LDL oxidation. PON Q was more efficient in blocking LDL oxidation if added when oxidation was initiated, whereas PON R was more potent when added 1 hour after the initiation of LDL oxidation. These data suggest that the 2 allozymes act on different substrates. Both PON allozymes were also able to reduce the oxidation of phospholipids and cholesteryl ester. PON Q arylesterase activity was reduced after 4 hours of LDL oxidation by only 28%, whereas the arylesterase activity of PON R was reduced by up to 55%. Inactivation of the calcium-dependent PON arylesterase activity by using the metal chelator EDTA, or by calcium ion removal on a Chelex column, did not alter PON's ability to inhibit LDL oxidation. However, blockage of the PON free sulfhydryl group at position 283 with p-hydroxymercuribenzoate inhibited both its arylesterase activity and its protection of LDL from oxidation. Recombinant PON mutants in which the PON free sulfhydryl group was replaced by either alanine or serine were no longer able to protect against LDL oxidation, even though they retained paraoxonase and arylesterase activities. Overall, these studies demonstrate that PON's arylesterase/paraoxonase activities and the protection against LDL oxidation do not involve the active site on the enzyme in exactly the same way, and PON's ability to protect LDL from oxidation requires the cysteine residue at position 283.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app