JOURNAL ARTICLE

Characterization of urinary calculi: in vitro study of "twinkling artifact" revealed by color-flow sonography

N Chelfouh, N Grenier, D Higueret, H Trillaud, O Levantal, J L Pariente, P Ballanger
AJR. American Journal of Roentgenology 1998, 171 (4): 1055-60
9762996

OBJECTIVE: The "twinkling artifact" is a color-flow sonographic artifact described behind calcifications and presenting as a random color encoding in the region where shadowing would be expected on gray-scale images. Our purpose was to study the relationship between this twinkling artifact seen behind urinary stones on color-flow sonography and the morphology or biochemical composition of these urinary stones.

MATERIALS AND METHODS: Forty-seven urinary stones were studied in vitro with color-flow sonography. Transmit frequency, color gain, velocity range, color filters, focal depth, and depth of field were changed during scanning. The twinkling artifact was graded 0 when absent, 1 when present but occupying a portion of acoustic shadowing, and 2 when occupying the entire acoustic shadowing. Stones were studied under a binocular magnifying glass to characterize the surface, and infrared spectrophotometry was used to determine the chemical composition.

RESULTS: Calculi of calcium oxalate dihydrate and calcium phosphate always produced a grade 1 or grade 2 twinkling artifact. Absence of artifact was noted only for calcium oxalate monohydrate and urate stones. In 100% of grade 0 calcium oxalate stones, the monohydrate compound was predominant (>93%). In 100% of grade 2 calcium oxalate stones, the dihydrate compound was predominant (>75%). For calcium oxalate stones, the surface pattern was correlated with their composition. Sensitivity and specificity for absence of artifact, as indicative of calcium oxalate monohydrate, were 60% and 83%, respectively, for all stones and 56% and 100%, respectively, only for radiopaque stones.

CONCLUSION: An in vitro relationship exists between the twinkling artifact and the morphology of urinary stones. Color-flow sonography could play a role in detecting dense calcium oxalate monohydrate calculi, which in turn may help predict fragmentability.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
9762996
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"