CLINICAL TRIAL
CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ground reaction forces and EMG activity with ankle bracing during inversion stress.

PURPOSE: The purpose of this investigation was to evaluate the effects of external ankle support on ground reaction forces and myoelectrical activity of selected lower extremity muscles during dynamic inversion stress.

METHODS: Twenty-four healthy males performed five trials of a lateral dynamic movement at a rate between 80-90% of their maximal speed under three ankle brace conditions (no brace--control, Aircast Sport-Stirrup, Active Ankle). Ground reaction forces along the mediolateral axis and EMG activity of the peroneus longus, tibialis anterior, and medial gastrocnemius were simultaneously recorded during force plate contact.

RESULTS: Ankle bracing did not affect peak impact force (P > 0.05), maximum loading force (P > 0.05), or peak propulsion force (P > 0.05) in the lateral direction compared with the control condition. Ankle bracing reduced the EMG activity of the peroneus longus during peak impact force compared with the control condition (P < 0.05), although no differences were noted between the two braces. Furthermore, peroneous longus activity during maximum loading force and peak propulsion remained unaffected (P < 0.05). Ankle bracing did not affect the EMG activity of the tibialis anterior and medial gastrocnemius at the point of peak impact force, maximum loading force (P > 0.05), and peak propulsion force (P > 0.05).

CONCLUSIONS: These data suggest that ankle bracing may not affect the forces experienced at the foot and ankle, but helps reduce the strain placed on the peroneus longus during peak impact force. Furthermore, ankle bracing does not alter the function of the tibialis anterior and medial gastrocnemius during dynamic inversion stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app