JOURNAL ARTICLE

Loss of beta1 integrin function results in a retardation of myogenic, but an acceleration of neuronal, differentiation of embryonic stem cells in vitro

J Rohwedel, K Guan, W Zuschratter, S Jin, G Ahnert-Hilger, D Fürst, R Fässler, A M Wobus
Developmental Biology 1998 September 15, 201 (2): 167-84
9740657
Integrin cell surface receptors play an important role for cell adhesion, migration, and differentiation during embryonic development by mediating cell-cell and cell-matrix interactions. Less is known about the function of integrins during commitment and lineage determination of early embryogenesis. Homozygous inactivation of the beta1 integrin gene results in embryonal death in mice around the time of implantation. In vitro, differentiation of embryonic stem (ES) cells which lack beta1 integrin (beta1-/-) into the cardiogenic lineage is delayed and results in a disordered cellular specification (Fässler et al., J. Cell Sci. 109, 2989-2999, 1996). To analyze beta1 integrin function during myogenesis and neurogenesis we studied differentiation of beta1-/- ES cells via embryoid bodies into skeletal muscle and neuronal cells in vitro. beta1-/- cells showed delayed and reduced myogenic differentiation compared to wildtype and heterozygous (beta1+/-) ES cells. RT-PCR analysis demonstrated delayed expression of skeletal muscle-specific genes in the absence of beta1 integrin. Immunofluorescence studies with antibodies against the sarcomeric proteins myosin heavy chain, titin, nebulin, and slow C-protein showed that myotubes formed, but their number was reduced and the assembly of sarcomeric structures was retarded. In contrast, neuronal cells differentiating from beta1-/- ES cells appeared earlier than wildtype and heterozygous (beta1+/-) ES cells. This was shown by the accelerated expression of neuron-specific genes and an increased number of neuronal cells in beta1-/- embryoid bodies. However, neuronal outgrowth was retarded in the absence of beta1 integrin. No functional difference between wildtype and beta1-/- cells was found with respect to secretion of gamma-aminobutyric acid, the main neurotransmitter of ES cell-derived neuronal cells. The lineage-specific effects of loss of beta1 integrin function, that is the inhibition of mesodermal and acceleration of neuroectodermal differentiation, were supported by differential expression of genes encoding lineage-specific transcription factors (Brachyury, Pax-6, Mash1) and signaling molecules (BMP-4 and Wnt-1). Because of the reduced and delayed expression of the BMP-4 encoding gene in beta1-/- cells, we analyzed in wildtype and beta1-/- cells the regulatory role of exogenously added BMP-4 on the expression of the mesodermal and neuronal marker genes, Brachyury and wnt-1, respectively. The data suggest that BMP-4 plays a regulatory role during differentiation of wildtype and beta1-/- cells by modifying mesodermal and neuronal pathways. The reduced expression of BMP-4 in beta1-/- cells may account for the accelerated neuronal differentiation in beta1-/- ES cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
9740657
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"