Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor.

Journal of Neuroscience 1998 September 16
Previous pharmacological studies have indicated the possible existence of functional interactions between mu-, delta- and kappa-opioid receptors in the CNS. We have investigated this issue using a genetic approach. Here we describe in vitro and in vivo functional activity of delta- and kappa-opioid receptors in mice lacking the mu-opioid receptor (MOR). Measurements of agonist-induced [35S]GTPgammaS binding and adenylyl cyclase inhibition showed that functional coupling of delta- and kappa-receptors to G-proteins is preserved in the brain of mutant mice. In the mouse vas deferens bioassay, deltorphin II and cyclic[D-penicillamine2, D-penicillamine5] enkephalin exhibited similar potency to inhibit smooth muscle contraction in both wild-type and MOR -/- mice. delta-Analgesia induced by deltorphin II was slightly diminished in mutant mice, when the tail flick test was used. Deltorphin II strongly reduced the respiratory frequency in wild-type mice but not in MOR -/- mice. Analgesic and respiratory responses produced by the selective kappa-agonist U-50,488H were unchanged in MOR-deficient mice. In conclusion, the preservation of delta- and kappa-receptor signaling properties in mice lacking mu-receptors provides no evidence for opioid receptor cross-talk at the cellular level. Intact antinociceptive and respiratory responses to the kappa-agonist further suggest that the kappa-receptor mainly acts independently from the mu-receptor in vivo. Reduced delta-analgesia and the absence of delta-respiratory depression in MOR-deficient mice together indicate that functional interactions may take place between mu-receptors and central delta-receptors in specific neuronal pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app