Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora.

The crystal structure of the 40-kDa endo-polygalacturonase from Erwinia carotovora ssp. carotovora was solved by multiple isomorphous replacement and refined at 1.9 A to a conventional crystallographic R-factor of 0.198 and Rfree of 0.239. This is the first structure of a polygalacturonase and comprises a 10 turn right-handed parallel beta-helix domain with two loop regions forming a "tunnel like" substrate-binding cleft. Sequence conservation indicates that the active site of polygalacturonase is between these two loop regions, and comparison of the structure of polygalacturonase with that of rhamnogalacturonase A from Aspergillus aculeatus enables two conserved aspartates, presumed to be catalytic residues, to be identified. An adjacent histidine, in accord with biochemical results, is also seen. A similarity in overall electrostatic properties of the substrate-binding clefts of polygalacturonase and pectate lyase, which bind and cleave the same substrate, polygalacturonic acid, is also revealed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app