Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain

E R Melhem, R J Bert, R E Walker
AJR. American Journal of Roentgenology 1998, 171 (3): 803-7

OBJECTIVE: The purpose of this study was to compare the contrast enhancement of lesions of the brain revealed by gadolinium-enhanced optimized fast fluid-attenuated inversion recovery (FLAIR) MR imaging with that of lesions on gadolinium-enhanced optimized T1-weighted spin-echo MR imaging.

SUBJECTS AND METHODS: Using computer simulations, we optimized the fast FLAIR parameters (TR, TEeff, and inversion time) and the T1-weighted spin-echo parameters (TR and TE) to provide maximum difference in signal intensity between enhancing lesions of the brain and white matter. Seventy-six consecutive patients referred for single-dose gadolinium-enhanced MR imaging of the brain underwent both optimized techniques, which were matched for spatial resolution, bandwidth, and number of excitations. The gadolinium-enhanced fast FLAIR and T -weighted spin-echo MR images were evaluated independently by two observers for number and size of enhancing lesions and for the degree of gray-white matter differentiation. Contrast-to-noise ratios were measured for enhancing lesions 1.0 cm or larger in diameter using 8 x 8 pixel regions of interest in the enhancing lesions and normal white matter.

RESULTS: The most revealing parameters for fast FLAIR MR imaging proved to be a TR of 1500 msec, an inversion time of 683 msec, and a TEeff of 16 msec. For T1-weighted spin-echo MR imaging, the optimized parameters were a TR of 550 msec and a TE of 16 msec. In 28 patients, we saw enhancing lesions of the brain with at least one MR imaging technique. More lesions were seen on the T1-weighted spin-echo sequence (n = 141) than on the fast FLAIR sequence (n = 94) (p < .03). Gray-white matter differentiation was significantly better on the fast FLAIR sequence (p < .001). Contrast-to-noise ratios of enhancing lesions were greater on the T1-weighted spin-echo sequence (p < .001).

CONCLUSION: In this study, optimized gadolinium-enhanced conventional T1-weighted spin-echo MR imaging proved superior to gadolinium-enhanced fast FLAIR MR imaging in revealing lesions of the brain.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"