Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Subtype-specific involvement of metabotropic glutamate receptors in two forms of long-term potentiation in the dentate gyrus of freely moving rats.

Neuroscience 1998 October
In this study, the role of metabotropic glutamate receptors in N-methyl-D-aspartate receptor-dependent and voltage-gated calcium channel-dependent long-term potentiation in the dentate gyrus of freely moving rats was investigated. Antagonists for group 1 metabotropic glutamate receptors ((S)-4-carboxyphenylglycine), group 1/2 metabotropic glutamate receptors ((RS)-alpha-methyl-4-carboxyphenylglycine) and group 2 metabotropic glutamate receptors ((RS)-alpha-methylserine O-phosphate monophenylester) were used. The N-methyl-D-aspartate receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid, and the L-type voltage-gated calcium channel antagonist, methoxyverapamil were used to investigate the N-methyl-D-aspartate receptor and voltage-gated calcium channel contribution to the long-term potentiation recorded. Field excitatory postsynaptic potential slope and population spike amplitude were measured. Drugs were applied, prior to tetanus, via a cannula implanted into the lateral cerebral ventricle. 200 Hz tetanization produces a long-term potentiation which is inhibited by application of D(-)-2-amino-5-phosphonopentanoic acid and (RS)-alpha-methyl-4-carboxyphenylglycine. In this study, a dose-dependent inhibition of 200 Hz long-term potentiation expression was obtained with (S)-4-carboxyphenylglycine. Long-term potentiation induced by 400 Hz tetanization was not inhibited by D(-)-2-amino-5-phosphonopentanoic acid, although the amplitude of short-term potentiation was reduced. (RS)-alpha-methyl-4-carboxyphenylglycine and (S)-4-carboxyphenylglycine, both in the presence and absence of D(-)-2-amino-5-phosphonopentanoic acid, inhibited the development of 400 Hz long-term potentiation. (RS)-alpha-methylserine O-phosphate monophenylester had no significant effect on long-term potentiation induced by either 200 or 400 Hz tetanization. Application of methoxyverapamil significantly inhibited 400 Hz long-term potentiation, but had no effect on 200 Hz long-term potentiation. These data suggest that 400 Hz long-term potentiation, induced in the presence of D(-)-2-amino-5-phosphonopentanoic acid, requires activation of L-type calcium channels. Furthermore, these results strongly support a critical role for group 1 metabotropic glutamate receptors in both N-methyl-D-aspartate receptor- and voltage-gated calcium channel-dependent long-term potentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app