Journal Article
Review
Add like
Add dislike
Add to saved papers

Alternative bearing surfaces for total joint arthroplasty.

The biologic response to polyethylene particulate debris generated from metal-on-polyethylene bearing surfaces is thought to be largely responsible for periprosthetic osteolysis and aseptic loosening in total joint arthroplasty. As a result, there has been an interest in developing polyethylene with improved wear characteristics, as well as a renewed interest in alternative bearing surfaces for total joint arthroplasty, including ceramic-polyethylene, metal-metal, and ceramic-ceramic articulations. These alternative surfaces have demonstrated less friction and lower wear rates than metal-on-polyethylene bearing surfaces in both clinical and laboratory experiments. Clinical results, although only short- to mid-term, have been encouraging. Alternative bearing surfaces, with lower wear rates and less particulate debris formation, may have the potential to improve total joint arthroplasty survivorship by decreasing periprosthetic osteolysis, especially in younger, high-demand patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app