Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Coherence analysis of the human sleep electroencephalogram.

Neuroscience 1998 August
Animal studies have shown that the sleep-related oscillations in the frequency range of spindles and slow-waves, and in the gamma band occur synchronously over large parts of the cerebral cortex. Coherence analysis was used to investigate these oscillations in the human sleep electroencephalogram. In all-night electroencephalogram recordings from eight young subjects power and coherence spectra within and between cerebral hemispheres were computed from bipolar derivations placed bilaterally along the antero-posterior axis. The 0.75-50 Hz range was examined with a resolution of 0.25 Hz. Distinct peaks in coherence were present in non-rapid eye movement sleep but not in rapid eye movement sleep. The most prominent and consistent peak was seen in the range of sleep spindles (13-14 Hz), and additional peaks were present in the alpha band (9-10 Hz) and low delta band (1-2 Hz). Whereas coherence in the spindle range was highest in stage 2, the alpha peak was most prominent in slow-wave sleep (stages 3 and 4). Interhemispheric coherence at 30 Hz was higher in rapid eye movement sleep than in non-rapid eye movement sleep. There were also marked sleep state-independent regional differences. Coherence between homologous interhemispheric derivations was high in the low frequency range and declined with increasing frequencies, whereas coherence of intrahemispheric and non-homologous interhemispheric derivations was at a low level throughout the spectra. It is concluded that coherence analysis may provide insights into large-scale functional connectivities of brain regions during sleep. The high coherence of sleep spindles is an indication for their widespread and quasi-synchronous occurrence throughout the cortex and may point to their specific role in the sleep process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app