Add like
Add dislike
Add to saved papers

Effects of inhaled nitric oxide during permissive hypercapnia in acute respiratory failure in piglets.

OBJECTIVE: To look for the effects of inhaled nitric oxide on oxygenation and pulmonary hemodynamics during acute hypercapnia in acute respiratory failure.

DESIGN: Prospective, randomized, experimental study.

SETTING: University research laboratory.

SUBJECTS: Ten piglets, weighing 9 to 13 kg.

INTERVENTIONS: Acute respiratory failure was induced by oleic acid infusion and repeated lung lavages with 0.9% sodium chloride. The protocol consisted of three randomly assigned periods with different PaCO2 levels. Tidal volume was reduced to induce hypercapnia. Inspiratory time was prolonged to achieve similar mean airway pressures. During permissive hypercapnia, pH was not corrected. At each PaCO2 period, the animals were ventilated with inhaled nitric oxide of 10 parts per million and without nitric oxide inhalation.

MEASUREMENTS AND MAIN RESULTS: Continuous hemodynamic monitoring included right atrial, mean pulmonary arterial, and mean systemic arterial pressures, arterial and mixed venous oxygen saturations, and continuous flow recording at the pulmonary artery. In addition, airway pressures, tidal volumes, dynamic lung compliance and airway resistance, end-tidal CO2 concentrations, and arterial and mixed venous blood gases were measured. Data were obtained at baseline and after lung injury, at normocapnia, at two levels of hypercapnia with and without nitric oxide inhalation. Acute hypercapnia resulted in a significant decrease in blood pH and a significant increase in mean pulmonary arterial pressure. There was no significant change in PaO2 during normocapnia and hypercapnia. Inhaled nitric oxide significantly decreased the mean pulmonary arterial pressure during both hypercapnic periods. It significantly improved oxygenation during both normocapnia and hypercapnia.

CONCLUSIONS: Acute hypercapnia resulted in a significant increase in pulmonary arterial pressure without influencing oxygenation and cardiac output. Inhaled nitric oxide significantly reduced the pulmonary hypertension induced by acute permissive hypercapnia but did not influence the flow through the pulmonary artery. Inhaled nitric oxide significantly improved oxygenation in this model of acute lung injury during normocapnia and acute hypercapnia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app