Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy

M Erkintalo, D Bendahan, J P Mattéi, C Fabreguettes, P Vague, P J Cozzone
Metabolism: Clinical and Experimental 1998, 47 (7): 769-76
Skeletal muscle energetics of seven hyperthyroid patients were investigated throughout a rest-exercise-recovery protocol using phosphorus-31 magnetic resonance spectroscopy (31P MRS) to quantitatively document in vivo the metabolic bases of impaired muscle performance in hyperthyroidism. The contributions of the main pathways of adenosine triphosphate (ATP) synthesis to energy production and proton efflux were measured and compared with results from normal muscle. At rest, a reduced concentration of phosphocreatine (PCr) was calculated for hyperthyroid patients when compared with controls, whereas pH and concentrations of inorganic phosphate (Pi) and phosphomonoesters (PME) were not different from controls. During exercise, the analysis of changes in pH and PCr concentration demonstrated that (1) at the onset of exercise, the magnitude of glycolysis activation is significantly larger for patients, resulting in a marked pH decrease; (2) the energy cost of exercise is higher for patients as compared with controls performing the same amount of work; and (3) both anaerobic and aerobic pathways are significantly more activated in the hyperthyroid group throughout the 3 minutes of exercise. During recovery, the rates of proton efflux and PCr resynthesis were similar in both groups, excluding any alteration in oxidative function and proton handling as a cause of initial glycolytic hyperactivation. The increased energy cost measured for patients during exercise evidences an increased need for energy, which is (1) probably linked to the existence of additional ATP-consuming mechanism(s), and (2) supported by hyperactivation of both aerobic and anaerobic pathways. These findings imply that, all things equal, a hyperthyroid muscle requires more energy to function than normal, and as a result is potentially more fatiguable.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"