Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Physiological responses to simulated rock climbing at different angles.

PURPOSE: Although rock climbing has increased in popularity as a recreational activity and competitive sport, few studies have assessed the physiological demands of the activity. To describe the physiological responses to rock climbing at different angles.

METHODS: Sixteen experienced climbers (age = 26 +/- 8 yr) attempted intermittent climbing bouts at different angles on a special rock climbing treadmill (Brewer's Ledge Treadwall). Heart rate (HR) was monitored continuously, and VO2 was determined at 20-s intervals during each climbing bout. Immediately after each bout, the subject provided a rating of perceived exertion (RPE), and an average of right and left handgrip force (HG) was obtained. Blood was collected via fingerprick after each bout and analyzed for lactate (BL). On a separate day, each subject completed a steady-state treadmill running bout at a HR equal to that obtained at an 86 degree angle during the climbing test. This test was followed by a progression to exhaustion to determine peak HR and VO2 responses.

RESULTS: While HR increased with climbing angle, VO2 did not significantly vary. BL began to significantly increase as the angle exceeded vertical (91 degrees) and continued to increase with successive angles. HG decreased with increasing angle and was negatively correlated with BL (r = -0.96). Scores for RPE increased with steeper angles. The comparison of steady-state work at the same HR for climbing versus treadmill running revealed a higher VO2 during running with no differences in BL and RPE.

CONCLUSIONS: Based upon these results, it was concluded that continuous rock climbing over terrain steepness of 80 degrees to 102 degrees presents a "very heavy" work challenge, averaging 8.4-9.0 metabolic equivalents, regardless of angle. Despite similar RPE and BL, the relative exercise intensity elicited from simulated rock climbing is lower than that of running at the same HR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app