Add like
Add dislike
Add to saved papers

Down-regulation of laminin-binding integrins by 1 alpha,25-dihydroxyvitamin D3 in human melanoma cells in vitro.

In the present investigation the effect of 1 alpha,25(OH)2D3 on the expression of the integrin laminin receptor on the melanoma cell line SK-MEL-28 has been examined. The SK-MEL-28 cells were shown to contain high-affinity receptors for 1 alpha,25(OH)2D3 and cell proliferation was found to be inhibited in a dose-dependent manner in response to the hormone. Using monoclonal antibodies against the alpha 6-sub-unit of the integrin laminin receptor, immunocytochemistry demonstrated that exposure of cells to 1 alpha,25(OH)2D3 for 5 days caused a reduced staining intensity. This observation was further confirmed by dot blot analysis, where a dose-dependent decline of alpha 6 expression was obtained after treatment of the cells with 1 alpha,25(OH)2D3 for 6 days. FACS-analysis was performed in order to quantify this decline, and it was found that the level of alpha 6-subunits on the cell surface was reduced by more than 40%. Additional investigations including Northern blot analyses of poly(A)+RNA extracts also showed a dose-dependent reduction of alpha 6 mRNA. Interestingly, the decrease of alpha 6 expression on the surface of SK-MEL-28 melanoma cells was accompanied by a reduced ability of the cells to adhere to an artificial basement membrane. In conclusion, the present investigation shows that besides having an antiproliferative effect on the SK-MEL-28 melanoma cells, 1 alpha,25(OH)2D3 is also able to inhibit the surface expression of the alpha 6-subunit of the integrin laminin receptor. Moreover, the results strongly indicate that 1 alpha,25(OH)2D3 exerts its regulatory effect on the alpha 6-subunit at the transcriptional level rather than at the protein level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app