JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development.

Development 1998 July
We have recently shown in mice that four members of the T-box family of transcription factors (Tbx2-Tbx5) are expressed in developing limb buds, and that expression of two of these genes, Tbx4 and Tbx5, is primarily restricted to the developing hindlimbs and forelimbs, respectively. In this report, we investigate the role of these genes in limb specification and development, using the chick as a model system. We induced the formation of ectopic limbs in the flank of chick embryos to examine the relationship between the identity of the limb-specific T-box genes being expressed and the identity of limb structures that subsequently develop. We found that, whereas bud regions expressing Tbx4 developed characteristic leg structures, regions expressing Tbx5 developed characteristic wing features. In addition, heterotopic grafts of limb mesenchyme (wing bud into leg bud, and vice versa), which are known to retain the identity of the donor tissue after transplantation, retained autonomous expression of the appropriate, limb-specific T-box gene, with no evidence of regulation by the host bud. Thus there is a direct relationship between the identity of the structures that develop in normal, ectopic and recombinant limbs, and the identity of the T-box gene(s) being expressed. To investigate the regulation of T-box gene expression during limb development, we employed several other embryological manipulations. By surgically removing the apical ectodermal ridge (AER) from either wing or leg buds, we found that, in contrast to all other genes implicated in the patterning of developing appendages, maintenance of T-box gene expression is not dependent on the continued provision of signals from the AER or the zone of polarizing activity (ZPA). By generating an ectopic ZPA, by grafting a sonic hedgehog (SHH)-expressing cell pellet under the anterior AER, we found that Tbx2 expression can lie downstream of SHH. Finally, by grafting a SHH-expressing cell pellet to the anterior margin of a bud from which the AER had been removed, we found that Tbx2 may be a direct, short-range target of SHH. Our findings suggest that these genes are intimately involved in limb development and the specification of limb identity, and a new model for the evolution of vertebrate appendages is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app