JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of a p53 polymorphism in the development of human papillomavirus-associated cancer.

Nature 1998 May 22
The E6 oncoprotein derived from tumour-associated human papillomaviruses (HPVs) binds to and induces the degradation of the cellular tumour-suppressor protein p53. A common polymorphism that occurs in the p53 amino-acid sequence results in the presence of either a proline or an arginine at position 72. The effect of this polymorphism on the susceptibility of p53 to E6-mediated degradation has been investigated and the arginine form of p53 was found to be significantly more susceptible than the proline form. Moreover, allelic analysis of patients with HPV-associated tumours revealed a striking overrepresentation of homozygous arginine-72 p53 compared with the normal population, which indicated that individuals homozygous for arginine 72 are about seven times more susceptible to HPV-associated tumorigenesis than heterozygotes. The arginine-encoding allele therefore represents a significant risk factor in the development of HPV-associated cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app