JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata.

Planta 1998 May
Rice (Oryza sativa L.) phloem sieve tubes contain RPP13-1, a thioredoxin h protein that moves around the plant via the translocation stream. Such phloem-mobile proteins are thought to be synthesized in the companion cells prior to being transferred, through plasmodesmata, to the enucleate sieve-tube members. In this study, in-situ hybridization experiments confirmed that expression of RPP13-1 is restricted to companion cells within the mature phloem. To test the hypothesis that RPP13-1 enters the sieve tube, via plasmodesmata, recombinant RPP13-1 was expressed in Escherichia coli, extracted, purified and fluorescently labeled with fluorescein isothiocyanate (FITC) for use in microinjection experiments into tobacco (Nicotiana tabacum L.) mesophyll cells. The FITC-RPP13-1 moved from the injected cell into surrounding cells, whereas the E. coli thioredoxin, an evolutionary homolog of RPP13-1, when similarly labeled and injected, failed to move in this same experimental system. In addition, co-injection of RPP13-1 and FITC-dextrans established that RPP13-1 can induce an increase in plasmodesmal size exclusion limit to a value greater than 9.4 but less than 20 kDa. Nine mutant forms of RPP13-1 were constructed and tested for their capacity to move from cell to cell; two such mutants were found to be incapable of movement. Crystal-structure prediction studies were performed on wild-type and mutant RPP13-1 to identify the location of structural motifs required for protein trafficking through plasmodesmata. These studies are discussed with respect to plasmodesmal-mediated transport of macromolecules within the companion cell-sieve tube complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app