JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells.

In vivo, endothelial cells (ECs) are subjected to a complex mechanical environment composed of shear stress, pressure, and circumferential stretch. The aim of this study was to subject bovine aortic ECs to a pulsatile pressure oscillating from 70 to 130 mm Hg (mean of 100 mm Hg) in combination with pulsatile shear stresses from 0.1 to 6 dyne/cm2 (1 dyne/cm2=0.1 N/m2) with or without a cyclic circumferential stretch of 4% for 1, 4, and 24 hours. The effect of highly reversing oscillatory shear stress (range -3 to +3 dyne/cm2, mean of 0.3 dyne/cm2) typical of regions prone to the development of atherosclerotic plaques was also studied at 4 and 24 hours. Endothelin-1 (ET-1) and endothelial constitutive nitric oxide synthase (ecNOS) mRNA expression was time and mechanical force dependent. ET-1 mRNA was maximal at 4 hours and decreased to less than static culture expression at 24 hours, whereas ecNOS mRNA increased over time. Pressure combined with low shear stress upregulated ET-1 and ecNOS mRNA compared with static control. Additional increase in expression for both genes was observed under a combination of higher shear stress and pressure. A cyclic circumferential stretch of 4% did not induce a further increase in ET-1 and ecNOS mRNA at either low or high shear stress. Oscillatory shear stress with pressure induced a higher expression of ET-1 mRNA but lower expression of ecNOS mRNA compared with unidirectional shear stress and pressure. We have shown that the combination of pressure and oscillatory shear stress can downregulate ecNOS levels, as well as upregulate transient expression of ET-1, compared with unidirectional shear stress. These results provide a new insight into the exact role of mechanical forces in endothelial dysfunction in regions prone to the development of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app