RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome.
Nature Genetics 1998 May
The LIM-homeodomain protein Lmx1b plays a central role in dorso-ventral patterning of the vertebrate limb. Targeted disruption of Lmx1b results in skeletal defects including hypoplastic nails, absent patellae and a unique form of renal dysplasia (see accompanying manuscript by H. Chen et al.; ref. 2). These features are reminiscent of the dominantly inherited skeletal malformation nail patella syndrome (NPS). We show that LMX1B maps to the NPS locus and that three independent NPS patients carry de novo heterozygous mutations in this gene. Functional studies show that one of these mutations disrupts sequence-specific DNA binding, while the other two mutations result in premature termination of translation. These data demonstrate a unique role for LMX1B in renal development and in patterning of the skeletal system, and suggest that alteration of Lmx1b/LMX1B function in mice and humans results in similar phenotypes. Furthermore, we provide evidence for the first described mutations in a LIM-homeodomain protein which account for an inherited form of abnormal skeletal patterning and renal failure.
Full text links
Trending Papers
Clinical Evidence and Proposed Mechanisms for Cardiovascular and Kidney Benefits from Sodium-Glucose Co-transporter-2 Inhibitors.TouchREVIEWS in endocrinology. 2022 November
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app