JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MyoD and MEF2A mediate activation and repression of the p75NGFR gene during muscle development.

In an effort to clarify transient expression of the NGF low-affinity receptor p75NGFR during muscle development we have focused on the molecular mechanisms involved in the initiation and cessation of p75NGFR gene expression. Using quiescent C3H10T1/2 fibroblast as a tool, we observed that induction of differentiation competence in MyoD-transfected 10T1/2 fibroblasts was accompanied by the initiation of p75NGFR expression. Moreover, we could show that the bHLH transcription factor MyoD itself is a powerful candidate for transcriptional activation of the p75NGFR gene in muscle precursor cells. By means of MyoD-mutants we have found that both the amino terminus of the MyoD molecule as well as the bHLH-region are essential for transcriptional activity on the p75NGFR promoter. The fact that myocyte enhancer factor MEF2A inactivated MyoD-induced p75NGFR promoter activity strongly suggests that cell-specific regulation of the p75NGFR gene might be strictly dependent on the intracellular composition and balance of the appropriate bHLH-transcription factors and their modulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app