Receptors involved in the positive inotropic action induced by dopamine on the ventricle of a 7-day-old chick embryo heart

L Ouedraogo, M Magnon, L Sawadogo, R Tricoche
Fundamental & Clinical Pharmacology 1998, 12 (2): 133-42
Earlier experiments only revealed involvement of sympathetic pre-synaptic dopaminergic receptors in dopamine induced inotropism in myocardium. We therefore used electrically stimulated (1 Hz) isolated 7-day-old chick embryo heart ventricles, thought to be devoid of functional sympathetic nerves, to re-investigate post-synaptic receptors involvement and particularly that of dopaminergic receptors in the positive inotropic effect of dopamine. The results showed that noradrenaline, isoprenaline and dopamine produced a positive inotropic effect with a similar efficacy and with an order of potency as follows: Isoprenaline = Noradrenaline > Dopamine. Tyramine induced no significant modification of the "initial tension" indicating that functional sympathetic innervation and/or releasable endogenous catecholamines were not demonstrable in the 7-day-old chick embryo heart ventricle. Propranolol (1 microM) competitively antagonized the positive inotropic response to isoprenaline, noradrenaline and dopamine, meanwhile phentolamine (3 microM) failed to significantly modify the effects of both noradrenaline and dopamine, indicating that these catecholamines induced their positive inotropic effects via stimulation of beta-adrenoceptors; involvement of alpha-adrenergic receptors stimulation was not demonstrable in these effects. Moreover, haloperidol (2 microM) antagonized the positive inotropic response to dopamine but had not any significant effect on the response to isoprenaline. The combined application of both propranolol and haloperidol antagonized the positive inotropic response to dopamine to a greater extent than when these two antagonists were given alone. Consequently, post-synaptic dopaminergic receptors were also involved in the positive inotropic effect of dopamine. Furthermore, in preparations in which sodium channels were inactivated by high potassium physiological salt solution, high concentrations of dopamine (0.1 mM to 1 mM) induced a slow developing electrical and positive inotropic responses which were also inhibited by propranolol and haloperidol, but not by phentolamine. These latter results indicated that like beta-adrenergic stimulation, the slow inward calcium current activated by stimulation of adenylate cyclase, was at least in part involved in the positive inotropic response to dopamine. In conclusion, dopamine induced its positive inotropism via stimulation of post-synaptic beta-adrenergic and dopaminergic receptors. The contribution of dopaminergic receptors in this positive inotropic effect might be of the DA-2 receptors since haloperidol used had been reported to be more DA-2 than DA-1 antagonist. These DA-2 receptors subtypes would mediate activation of adenylate cyclase.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"