Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans

J A Zoladz, K Duda, J Majerczak
European Journal of Applied Physiology and Occupational Physiology 1998, 77 (5): 445-51
A group of 12 healthy non-smoking men [mean age 22.3 (SD 1.1) years], performed an incremental exercise test. The test started at 30 W, followed by increases in power output (P) of 30 W every 3 min, until exhaustion. Blood samples were taken from an antecubital vein for determination of plasma concentration lactate [La-]pl and acid-base balance variables. Below the lactate threshold (LT) defined in this study as the highest P above which a sustained increase in [La-]pl was observed (at least 0.5 mmol x l[-1] within 3 min), the pulmonary oxygen uptake (VO2) measured breath-by-breath, showed a linear relationship with P. However, at P above LT [in this study 135 (SD 30) W] there was an additional accumulating increase in VO2 above that expected from the increase in P alone. The magnitude of this effect was illustrated by the difference in the final P observed at maximal oxygen uptake (VO2max) during the incremental exercise test (Pmax,obs at VO2max) and the expected power output at VO2max(Pmax,exp at VO2max) predicted from the linear VO2-P relationship derived from the data collected below LT. The Pmax,obs at VO2max amounting to 270 (SD 19) W was 65.1 (SD 35) W (19%) lower (P < 0.01) than the Pmax,exp at VO2max. The mean value of VO2max reached at Pmax,obs amounted to 3555 (SD 226) ml x min(-1) which was 572 (SD 269) ml x min(-1) higher (P < 0.01) than the VO2 expected at this P, calculated from the linear relationship between VO2 and P derived from the data collected below LT. This fall in locomotory efficiency expressed by the additional increase in VO2, amounting to 572 (SD 269) ml O2 x min(-1), was accompanied by a significant increase in [La-]pl amounting to 7.04 (SD 2.2) mmol x l(-1), a significant increase in blood hydrogen ion concentration ([H+]b) to 7.4 (SD 3) nmol x l(-1) and a significant fall in blood bicarbonate concentration to 5.78 (SD 1.7) mmol x l(-1), in relation to the values measured at the P of the LT. We also correlated the individual values of the additional VO2 with the increases (delta) in variables [La-]pl and delta[H+]b. The delta values for [La-]pl and delta[H+]b were expressed as the differences between values reached at the Pmax,obs at VO2max and the values at LT. No significant correlations between the additional VO2 and delta[La-]pl on [H+]b were found. In conclusion, when performing an incremental exercise test, exceeding P corresponding to LT was accompanied by a significant additional increase in VO2 above that expected from the linear relationship between VO2 and P occurring at lower P. However, the magnitude of the additional increase in VO2 did not correlate with the magnitude of the increases in [La-]pl and [H+]b reached in the final stages of the incremental test.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"