Mixed effects logistic regression models for longitudinal binary response data with informative drop-out

T R Ten Have, A R Kunselman, E P Pulkstenis, J R Landis
Biometrics 1998, 54 (1): 367-83
A shared parameter model with logistic link is presented for longitudinal binary response data to accommodate informative drop-out. The model consists of observed longitudinal and missing response components that share random effects parameters. To our knowledge, this is the first presentation of such a model for longitudinal binary response data. Comparisons are made to an approximate conditional logit model in terms of a clinical trial dataset and simulations. The naive mixed effects logit model that does not account for informative drop-out is also compared. The simulation-based differences among the models with respect to coverage of confidence intervals, bias, and mean squared error (MSE) depend on at least two factors: whether an effect is a between- or within-subject effect and the amount of between-subject variation as exhibited by variance components of the random effects distributions. When the shared parameter model holds, the approximate conditional model provides confidence intervals with good coverage for within-cluster factors but not for between-cluster factors. The converse is true for the naive model. Under a different drop-out mechanism, when the probability of drop-out is dependent only on the current unobserved observation, all three models behave similarly by providing between-subject confidence intervals with good coverage and comparable MSE and bias but poor within-subject confidence intervals, MSE, and bias. The naive model does more poorly with respect to the within-subject effects than do the shared parameter and approximate conditional models. The data analysis, which entails a comparison of two pain relievers and a placebo with respect to pain relief, conforms to the simulation results based on the shared parameter model but not on the simulation based on the outcome-driven drop-out process. This comparison between the data analysis and simulation results may provide evidence that the shared parameter model holds for the pain data.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"