JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma.

Mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) is a key molecule in intracellular signal transducing pathways that transport extracellular stimuli from cell surface to nuclei. MAPK/ERK has been revealed to be involved in the physiological proliferation of mammalian cells and also to potentiate them to transform. However, its role in the outgrowth of human hepatocellular carcinoma (HCC) has yet to be clarified. Therefore, in this study, we investigated the activation of MAPK/ERK and its associated gene expression in HCC. MAPK/ERK was activated in 15 of 26 cases of HCC we examined (58%), and its activity level was significantly higher in HCC than in the adjacent non-cancerous lesions. Besides, MAPK/ERK activation in HCC was positively correlated with protein expression of transcription factor c-Fos. Furthermore, in 25 of 26 cases of HCC which genomic DNA was available, 22 cases without genomic DNA amplification exhibited positive correlation, not only between protein expression of c-Fos and cyclin D1, but also between MAPK/ERK activation and cyclin D1 expression. Concerning the relationship between MAPK/ERK activation and the clinicohistopathological features of HCC, the tumor (HCC) versus non-tumor (non-cancerous counterpart) ratio (T/N) of MAPK/ERK activity was positively correlated with tumor size, but neither with the stage of HCC nor the degree of differentiation of HCC. In conclusion, these findings suggest that MAPK/ERK activation in human HCC may play an important role in multistep hepatocarcinogenesis, especially in the progression of HCC; at least in part, through cyclin D1 up-regulation primarily induced by MAPK/ERK via c-Fos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app